Search results for "Interface tissue engineering"

showing 5 items of 5 documents

Bi-layer PCL/PLA scaffold prepared by melt for interface tissue engineering

2017

The development of porous multilayer devices allow controlling chemical, physical and mechanical properties by tuning the properties of each single layer. For instance, this feature is of main concern for the production of porous devices designed to regenerate diseased zones at the interface of tissue presenting intrinsic anisotropic structures that gradually change from one tissue to another. In this context, synthetic biodegradable polymers commonly used biomedical applications include polylactic acid (PLA) and polycaprolactone (PCL). In this work, a novel bi-layered multiphasic scaffold (BLS) is presented. It is composed by a PLA-layer presenting pore size in the range of 90-110 μm while…

Melt mixingParticulate leachingInterface tissue engineeringPore size gradientFunctionally graded scaffold
researchProduct

Preparation of three-layered porous PLA/PEG scaffold: relationship between morphology, mechanical behavior and cell permeability.

2015

Interface tissue engineering (ITE) is used to repair or regenerate interface living tissue such as for instance bone and cartilage. This kind of tissues present natural different properties from a biological and mechanical point of view. With the aim to imitating the natural gradient occurring in the bone-cartilage tissue, several technologies and methods have been proposed over recent years in order to develop polymeric functionally graded scaffolds (FGS). In this study three-layered scaffolds with a pore size gradient were developed by melt mixing polylactic acid (PLA) and two water-soluble porogen agents: sodium chloride (NaCl) and polyethylene glycol (PEG). Pore dimensions were controll…

Materials scienceBone RegenerationCell SurvivalPolymersParticulate leachingPolyestersBiomedical EngineeringBiocompatible Materials02 engineering and technologyPolyethylene glycol010402 general chemistry01 natural sciencesPermeabilityCell LinePolyethylene GlycolsBiomaterialschemistry.chemical_compoundMicePolylactic acidTissue engineeringMelt mixingPEG ratioAnimalsLactic AcidComposite materialBone regenerationPorosityCell ProliferationMechanical Phenomenachemistry.chemical_classificationTissue ScaffoldsInterface tissue engineeringPore size gradientAdhesivenessWaterFunctionally graded scaffoldPolymerPermeation021001 nanoscience & nanotechnologyBiomaterial0104 chemical sciencesSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistrySolubilityMechanics of Materials0210 nano-technologyPorosityJournal of the mechanical behavior of biomedical materials
researchProduct

Integration of PCL and PLA in a monolithic porous scaffold for interface tissue engineering.

2016

A novel bi-layered multiphasic scaffold (BLS) have been fabricated for the first time by combining melt mixing, compression molding and particulate leaching. One layer has been composed by polylactic acid (PLA) presenting pore size in the range of 90-110µm while the other layer has been made of polycaprolactone (PCL) with pores ranging from 5 to 40µm. The different chemo-physical properties of the two biopolymers combined with the tunable pore architecture permitted to realize monolithic functionally graded scaffolds engineered to be potentially used for interface tissues regenerations. BLS have been characterized from a morphological and a mechanical point of view. In particular, mechanica…

ScaffoldMaterials scienceParticulate leachingPolyestersBiomedical EngineeringCompression molding02 engineering and technology010402 general chemistry01 natural sciencesBiomaterialschemistry.chemical_compoundMicePolylactic acidTissue engineeringChemical gradientMelt mixingSettore BIO/10 - BiochimicaElastic ModulusAnimalsComposite materialPorosityElastic modulusCells CulturedOsteoblastsTissue EngineeringTissue ScaffoldsInterface tissue engineeringPore size gradientSettore ING-IND/34 - Bioingegneria IndustrialeFunctionally graded scaffoldFibroblasts021001 nanoscience & nanotechnologyCoculture Techniques0104 chemical sciencesPolyesterSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryMechanics of MaterialsPolycaprolactoneNIH 3T3 Cells0210 nano-technologyPorosityJournal of the mechanical behavior of biomedical materials
researchProduct

Melt Processed PCL/PEG Scaffold with Discrete Pore Size Gradient for Selective Cellular Infiltration

2016

In order to develop scaffold able to mimic the natural gradient properties of tissues, biphasic and triphasic approaches were adopted. In this work, polycaprolactone/polyethylene glycol (PCL/PEG) scaffolds were prepared by using a combination of melt mixing and selective leaching without harmful solvents. The method permitted to develop three-layer scaffolds with high control of porosity and pore size. The mechanical properties were evaluated under physiological condition in order to simulate the real conditions of work. Co-culture of osteoblastic and fibroblastic mice cells were carried out in order to study the differential cellular permeation through the different pore size layers.

particulate leachingMaterials Chemistry2506 Metals and AlloyPCL multilayer scaffoldPolymers and PlasticSettore ING-IND/22 - Scienza E Tecnologia Dei Materialimelt mixingpore size gradientSettore BIO/10 - BiochimicaOrganic Chemistryinterface tissue engineeringSettore ING-IND/34 - Bioingegneria Industrialefunctionally graded scaffoldChemical Engineering (all)
researchProduct

A facile and eco-friendly route to fabricate poly(Lactic acid) scaffolds with graded pore size

2016

Over the recent years, functionally graded scaffolds (FGS) gaineda crucial role for manufacturing of devices for tissue engineering. The importance of this new field of biomaterials research is due to the necessity to develop implants capable of mimicking the complex functionality of the various tissues, including a continuous change from one structure or composition to another. In this latter context, one topic of main interest concerns the design of appropriate scaffolds for bone-cartilage interface tissue. In this study, three-layered scaffolds with graded pore size were achieved by melt mixing poly(lactic acid) (PLA), sodium chloride (NaCl) and polyethylene glycol (PEG). Pore size distr…

Pore sizeMaterials sciencePolymersGeneral Chemical EngineeringParticulate leachingBiocompatible MaterialsBioengineeringContext (language use)02 engineering and technologyPolyethylene glycol010402 general chemistry01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyPolyethylene Glycolschemistry.chemical_compoundTissue engineeringMelt mixingPEG ratioHumansLactic AcidPorosityTissue EngineeringTissue ScaffoldsGeneral Immunology and MicrobiologyGeneral NeuroscienceInterface tissue engineeringPore size gradientFunctionally graded scaffold021001 nanoscience & nanotechnologyEnvironmentally friendlyPEG0104 chemical sciencesLactic acidchemistryChemical engineeringPLA0210 nano-technologyPorosity
researchProduct